A Field Evaluation to Compare the Performance of Personal Exposure Multi-Pollutant Samplers vs. Federal Method Monitors at a Central Ambient Air Monitoring Station in Steubenville, Ohio

> Air Quality IV September 22-23, 2004, Arlington, VA

S.E. Winter*, R.A. Bilonick, J.A. Withum, V.B. Conrad, R.M. Statnick, S.T. Ebelt, H.H Suh, P. Koutrakis

History

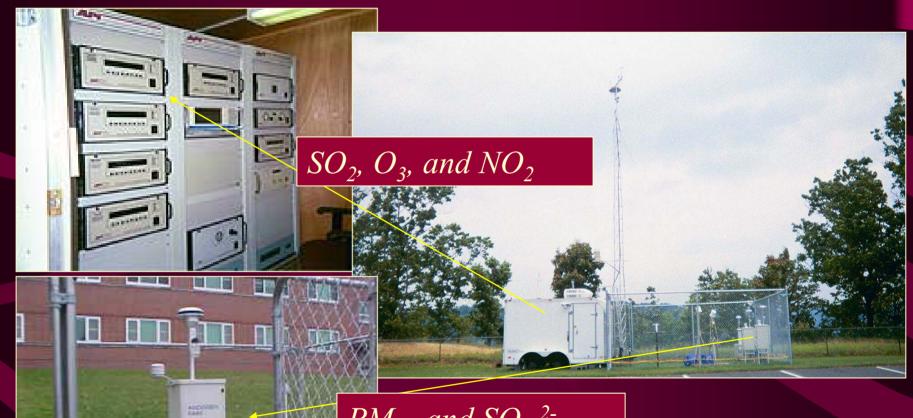
- 1997: USEPA promulgated PM_{2.5} standards
- NRC recommendations for PM_{2.5} science
 - Do measurements at ambient air station reflect personal exposure?
 - Is it PM_{2.5}, a component, a co-pollutant, or a combo responsible for the observed adverse health effects?
- Different sampling equipment and methods

Criteria for Evaluation

- Collocate personal exposure samplers and federal method monitors to compare under equal conditions
- Evaluate for PM_{2.5}, components, and co-pollutants
- Quantify instrumental and method parameters
 - Precision
 - Bias
 - Limits of Detection
- Long term field evaluation > SCAMP

SCAMP

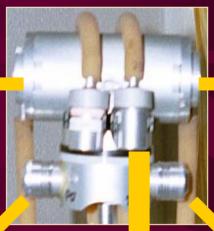
- Steubenville Comprehensive Air Monitoring Program
- Research Team: CONSOL Energy Inc., Harvard School of Public Health, Franciscan University of Steubenville, Ohio University, St. Vincent College, and Wheeling Jesuit University
- Funding: US DOE/NETL, OCDO, EPRI, API, AISI, NMA, NIEHS, EEI, USEPA, CONSOL Energy Inc.

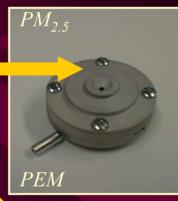


SCAMP

- Comprised of (2) interdependent programs
 - Outdoor ambient
 - Indoor, personal, and outside the home
- Outdoor
 - FRM PM_{2.5} and Federal Equivalent gas analyzers
- Indoor/Personal
 - Multi-pollutant sampler (developed by the Harvard School of Public Health)

Outdoor Ambient


 $PM_{2.5}$ and SO_4 ²⁻



Indoor, Personal, and Outside

 SO_2/NO_2 , Ogawa

20 weeks of Collocated Sampling

$Methodology - PM_{2.5}$

Monitor	Filter–Based or Continuous	Detection	Comments
MP Sampler	Filter – Based, 37 mm Teflon	Gravimetric	•Collects (2) PM _{2.5} filters per MP sampler •Flow rate of 4L/min
FRM PM _{2.5}	Filter – Based, 47 mm Teflon	Gravimetric	•Federal Reference Method •Flow rate of 16.7L/min

Methodology $-O_3$

Monitor	Filter–Based or Continuous	Detection	Comments
MP Sampler	Filter - Based, Glass fiber filter coated with sodium nitrite/potassium carbonate	Ion Chromatography	• Ogawa Passive Sampling Badge
O ₃ Gas Analyzer	Continuous	UV	• Federal Automated Equivalent Method

$Methodology - NO_2$

Monitor	Filter–Based or Continuous	Detection	Comments
MP Sampler	Filter - Based, Cellulose filter coated triethanolamine solution	Ion Chromatography	 Ogawa Passive Sampling Badge Additional extraction step with H₂O₂
NO ₂ Gas Analyzer	Continuous	Chemiluminescence	• Federal Automated Reference Method

$Methodology - SO_2$

Monitor	Filter–Based or Continuous	Detection	Comments
MP Sampler	Filter - Based, Cellulose coated triethanolamine solution	Ion Chromatography	 Ogawa Passive Sampling Badge Additional extraction step with H₂O₂
SO ₂ Gas Analyzer	Continuous	UV Fluorescence	• Federal Automated Equivalent Method

Methodology – SO₄²-

Monitor	Filter–Based or Continuous	Detection	Comments
MP Sampler	Filter – Based, Fluoropore filter	Ion Chromatography	• Mini-PEM operates at a flow of 0.8L/min
FRM PM _{2.5}	Filter – Based, 47 mm Teflon	Ion Chromatography	 Same filter used to determine mass used to determine sulfate Flow rate of 16.7L/min

Methodology – Data Analysis

- (Zero) Blank correction to gases not to PM_{2.5} or SO₄²⁻
- Limits of Detection were calculated as 3x the SD of blank measurements
- Statistical techniques outlined in Jaech's, Statistical Analysis of Measurement Errors were selected to estimate bias and precision
 - Field evaluation not a controlled lab experiment
 - Samplers of different designs and different methods
 - Precision of equipment was unknown, and ? if one was more precise than the other
 - Use daily pollutant values and not "standards"

Methodology – Data Analysis

- $Y_{ik} = \alpha_i + \beta_i \mu_k + \varepsilon_{ik}$
 - Where Y_{ik} is the observed concentration for the k^{th} of n parcels of air and the i^{th} of N samplers
 - α , β characterize the relative bias of the i^{th} sampler
 - $\mu_{k is}$ the true concentration of k^{th} air parcel
 - ε_{ik} is the random error from a Normal distribution with variance σ_i^2 for the i^{th} sampler
- Maximum likelihood estimates –Imprecision Variances and Relative Biases
- Likelihood Ratio tests used to determine if bias was constant or a function of pollutant concentration

Results - PM_{2.5}

- Precision
 - 1.9 (MP Sampler) vs. 2.6 μg/m³ (FRM)
- Relative Bias
 - 0.2 μ g/m³ when ambient [] = 10 μ g/m³
 - 2.0 μ g/m³ when ambient [] = 20 μ g/m³
 - $8.7 \,\mu\text{g/m}^3$ when ambient [] = $50 \,\mu\text{g/m}^3$
 - Bias changed with concentration
- Limits of Detection
 - 3.0 (MP Sampler) vs. 1.2 μ g/m³ (FRM)

Results - O₃

- Precision
 - 5.7 (MP Sampler) vs. 4.1 ppbv (FAE gas analyzer)
- Relative Bias
 - 0.2 ppbv when ambient [] = 10 ppbv
 - 2.2 ppbv when ambient [] = 25 ppbv
 - -4.8 ppbv when ambient [] = 45 ppbv
 - Bias changed with concentration
- Limits of Detection
 - 12.7,10.7 (MP Sampler) vs. 2.1 ppbv (FAE gas analyzer)

Results – NO₂

- Precision
 - 7.0 (MP Sampler) vs. 3.9 ppbv (FAR gas analyzer)
- Relative Bias
 - 2.0 ppbv when ambient [] = 5 ppbv
 - 2.0 ppbv when ambient [] = 10 ppbv
 - 2.0 ppbv when ambient [] = 25 ppbv
 - Bias was constant, did not change with concentration
- Limits of Detection
 - 10.8, 6.1 (MP Sampler) vs. 1.2 ppbv (FAR gas analyzer)

Results – SO₂

- Precision
 - 2.5 (MP Sampler) vs. 4.5 ppbv (FAE gas analyzer)
- Relative Bias
 - 6 ppbv when ambient [] = 5 ppbv
 - 7.9 ppbv when ambient [] = 10 ppbv
 - 13.4 ppbv when ambient [] = 25 ppbv
 - 20.7 ppbv when ambient [] = 45 ppbv
 - Bias changes with concentration
- Limits of Detection
 - 6.4 (MP Sampler) vs. 2.4ppbv (FAE gas analyzer)

Results – SO₄ ²⁻

- Precision
 - 0.6 (MP Sampler) vs. 0.9 μ g/m³ (FRM)
- Relative Bias
 - 0.0 μ g/m³ when ambient [] = 6 μ g/m³
 - 0.3 µg/m³ when ambient [] = 8 µg/m³
 - $0.6 \,\mu\text{g/m}^3$ when ambient [] = $10 \,\mu\text{g/m}^3$
 - Bias changed with concentration
- Limits of Detection
 - 0.2 (MP Sampler) vs. 0.1 μ g/m³ (FRM)

Summary

- Particulate Measurements (PM_{2.5}, SO₄ ²⁻)
 - The MP sampler was comparable to the FRM sampler.
 - Precision and LOD were approximately equal.
 - Bias was approximately 10% for $PM_{2.5}$ and 5% for SO_4^{2-} at the average ambient concentration.
 - Similar sampler design and methodology.

Summary

- Gaseous Measurements (O₃, NO₂, SO₂)
 - Results were mixed.
 - For O₃ and NO₂,
 - Biases were approximately 10% at the average ambient concentration.
 - However, LODs for the MP sampler were approximately 5 to 10x higher than the federal gas analyzers and 50% or greater of the average ambient concentration.
 - High blanks for O₃ and NO₂ passive sampling.
 - For SO₂,
 - Precision and LOD were comparable.
 - However there existed a large bias (50% or greater) between the MP sampler and the federal gas analyzer.
 - Reasons for large SO₂ Bias ?

Considerations

- SO₂ Bias
 - Ogawa reports good correlation with SO₂ gas analyzer
- Start times were not always correlated
- LODs were slightly higher but practically the same as a lab evaluation of the MP sampler
 - Development and Laboratory Performance Evaluation of a Personal Multipollutant Sampler for Simultaneous Measurements of Particulate and Gaseous Pollutant. *Aerosol Science and Technology*, Volume 35, Issue No. 3 2001.
- Comparison did not include carbon and elements

